
Building web application security into
your development process: are your
web applications vulnerable?
White paper

Table of contents
Introduction .2
Security as a process .3
Development lifecycle .3
Defining secure requirements .4
Addressing application security in analysis and design5
Coding for web application security .6

Secure coding practices .6
Designing secure user interfaces .6

Prototyping security into your application .7
Testing for security .7
Deploying secure applications .7
Security in a post-implementation environment .7
About HP WebInspect .8
Conclusion .8

Business case for application security .8

Introduction
Information security is constantly evolving. Companies
realized that electronic information is a corporate asset
and should be protected, and they started protecting
their information by using firewalls for network
protection. Security progressed with intrusion detection
systems (IDS) to monitor network traffic. Information
security now addresses web applications; however,
many companies do not know that their corporate
assets may be exposed even with firewalls and IDS.
This exposure results when web applications are not
developed with security in mind.

About 70 percent of today’s security breaches result
from vulnerabilities in web applications. For example,
the New York Times and eBay have both publicized
security breaches on their websites. In both cases,
attackers used the web applications to access
confidential information. From the New York Times
website, hackers stole confidential donor information,
including Social Security numbers and donation
amounts. From eBay, hackers stole user names and
passwords. They then stole customer credit card
information by setting up fraudulent auction sites that
mimicked eBay. These two, well-publicized events
demonstrate the power of application-level attacks
and confirm how web applications are vulnerable
even with proper firewall and IDS protection.

To prevent similar problems, you need to consider
security, not only from an operations perspective, but
as an integral part of the entire development lifecycle,
starting when you develop your web applications. You
should also use structured development processes.
Strong, repeatable development processes produce
better quality code in less time than unstructured
processes. They also result in efficiency and
effectiveness for your organization.

A structured, repeatable development process produces
a better application only if you systematically include
all aspects of application development. Development
processes that ignore any aspect of application
development can produce vulnerable applications
with poorly architected applications.

Many developers overlook security when they develop
web applications for three reasons.

First, web application security is relatively new.
Traditionally, organizations have focused on networks
and servers for security. However, even architectures
with secure networks and servers can be attacked
if applications are not secure.

Secondly, development tools such as Microsoft® Visual
Studio®, BEA WebLogic and Macromedia ColdFusion
provide powerful development environments for
improving development productivity. However, these
environments require careful configuration so that
only the appropriate services run in production.
Unfortunately, many development groups do not
configure their production environments properly,
leaving their web applications vulnerable.

Finally, developing secure web applications is usually an
afterthought. Because security is typically not included
in functional requirements, users do not focus on it, and
developers do not build security into the applications.
Some developers may not think that application security
is necessary. They may think that if they use Microsoft
Internet Information Services (IIS) or run their applications
behind a firewall, the applications are secure from
malicious attacks. Even developers who recognize the
importance of web application security usually see it as
part of the quality assurance (QA) process. As a result,
many web applications can be rich in functionality but
vulnerable to unwanted intrusions and attacks.

Furthermore, many development organizations view
security as a one-time activity during the development
process. In these cases, security becomes the
responsibility of one group within the organization,
such as the QA team or internal audit department.
Once the group signs off on an application, the
organization considers it secure.

However, web applications are not static systems.
Changes to web applications create risk, and what was
once secure can now be vulnerable. If security is a one-
time activity, a vulnerability that enters the system after
the audit can go undetected. Instead, you need to view
application security as a process, included throughout
the development lifecycle in order to create secure web
applications. Add security into the practices of every
team member associated with developing and running
your web applications.

This white paper describes how to add web application
security development practices to a typical object-
oriented development process. Examples use many
common models within the Unified Modeling Language
(UML). However, these practices are generic, and you
can add them into any structured development process.

2

Security as a process
Integrating security throughout the development lifecycle
is a paradigm shift for many development groups.
While many development teams claim that they view
security as a process, in reality they do not give security
the focus it requires. For example, many organizations
limit security needs to the technical requirements section
of a requirements document. The description is usually
broad, such as “Develop the product using IIS.” This
level of detail does not provide developers with the
guidance they need to develop applications securely.
As a result, security requirements do not have high
priority, and they get passed to the operations
department to complete as part of deployment.

You need to address security throughout the
development lifecycle. This includes defining security as
part of the functional and technical requirements for an
application. Once you complete the requirements, you
should model security as part of the analysis and design
of the application. The development team should use
secure coding practices. The QA team should build and
execute its test plan to address security, and you should
deploy the application in an environment that has been
hardened for security. Once deployed, conduct security
audits in the production environment periodically to
help the application remain secure when updated.
This is the process of web application security.

The remaining sections of this paper describe the
phases of the application development lifecycle and
how to add web application security into each.

Development lifecycle
The development lifecycle begins with common
terminology and processes. You can abstract all
development methodologies into the following
phases: requirements gathering, analysis and design,
development, quality assurance, deployment and post
deployment. Figure 1 shows this methodology.

Whether your development process uses extreme
programming (XP), iterative, waterfall or some other
derivative, each methodology contains tasks that you
can map to these phases. While different methodologies
may use different names for the phases and the number
of phases may vary, the type of work is the same. This
paper uses these general phases to describe how to
add security into your development process.

3

Figure 1: Common development
lifecycle methodology

Requirements
gathering

Analysis
and design Development Quality

assurance Deployment Post
deployment

Defining secure requirements
Creating secure web applications begins in the
requirements gathering phase. To gather requirements,
many organizations develop use cases that describe the
functional process of a system. Use cases are usually
developed with functional experts to describe how the
system will work. Use cases describe proposed business
processes and the steps the system will perform to
complete those processes. Use cases also describe
how external entities, called actors, will interact with
the system. When you develop use cases, you should
consider security as a business process. Each use case
should contain information that answers the question,
“What process makes my corporate assets and customer
information secure?” You may include steps within a use
case or abstract security requirements into a separate
use case for clarification and reuse.

For example, a web application lets customers purchase
products using the Internet. The system contains one
primary use case called Purchase Product. As part
of the purchasing process, the application needs to
authenticate a user to determine that the user is a valid
customer. Authentication is a form of application security
that you can model as a process. Authentication can be
as simple as validating a user name and password or as
complex as validation through multiple levels of security,
including timed-entry processes. The requirements must
adequately describe the detail required for this process.
Figure 2 shows the simple use case for a customer
purchasing a product.

The use case should also explain what the system should
do if the user is not authenticated. Modeling application
security using use cases can educate end users on the
importance of security within the application. It can also
provide specific direction for developers, eliminating
assumptions they may have.

In addition to modeling security processes, you
should establish business rules that further define
application security. Business rules are functional
aspects of the system that you cannot model as a
process. For example, you can create a business rule
that passwords expire after an account is inactive for
six months. You can document business rules in a
use case or independently, depending on how your
development group defines requirements. Either way,
set practices for managing business rules as part of
your overall requirements gathering process.

Do not limit your application security requirements to
functional requirements. Include them with technical
requirements as well. Technical requirements define
the features that are not user-defined, including server
configuration, capacity, performance, scalability and
security. Technical requirements that define application
security should focus on how to protect an application
from intrusive forms of attacks. Example requirements
include:

• Time out sessions after 10 minutes of inactivity so
that a user has to log back into the application.

• Validate all incoming data for proper format before
processing it.

• Only leave Port 80 open on production web servers.

Documenting technical security requirements helps
include security in later phases of the development
lifecycle.

4

Figure 2: Use case model of an
online checkout system

Customer Purchase product Authenticate
customer

Online checkout system

Figure 3: Security classes

Shopping cart
- Product
- Customer
+ Calculate price
+ Calculate tax
+ Calculate shipping
+ Verify credit card information

Customer
+ Name : string (idl)
- Address
- Credit card number
- Customer number
+ Provide name
+ Provide address
+ Provide credit card number

Product
- Item
- Description
- Price
- Weight
+ Provide information
+ Provide price

Security
- SQL injection policy
- Cross-site scripting policy
+ Check limits
+ Apply policy

Addressing application security in
analysis and design
Web application analysis and design include
developing class diagrams and interaction diagrams.
While you can build other diagrams, such as state
transition and component diagrams, during this phase,
the class diagram and interaction diagram are the
primary models. Analysis and design models describe
the logical and physical interactions among the objects
of the system. The class diagram depicts all the objects
of the system and describes their interactions. Interaction
diagrams are commonly called sequence diagrams
and depict how objects interact to complete a specific
function. The functions are usually use cases, but they
can also be infrastructure and foundation interactions.
You should address security within each of these models.
Ideally, development groups should address security
as independent objects within the model.

Continuing the online checkout system example, you
can develop security into the class diagram as shown
in Figure 3.

In this model, the customer and the product interact with
the shopping cart to complete a transaction. Without
security, the model is incomplete. However, security
objects play an important role. The security objects
contain the attributes and methods for preventing
malicious attacks. You should explicitly model security to
address appropriate security questions during this
phase of the project.

Another important analysis model is the interaction
diagram. This model describes how objects interact to
complete the process flow within a use case. It links the
functional use case and the objects. You can model
security in several different ways, depending on how it

is modeled in the use case and class diagram. If security
is modeled as a use case, create an interaction diagram
to model it. Security objects are modeled as object
lifelines within each diagram that requires them. Within
the use cases, individual steps that describe security are
modeled as line items within the interaction diagram.

Continuing the online checkout example, the interaction
diagram, shown in Figure 4, displays how the objects
interact to complete the checkout process.

In this example, security is modeled both as an object
lifeline and a step within the process. The security object
lifeline performs the security checks modeled in the class
diagram, while the steps are the same steps modeled
within the use case diagram. Once you diagram these
models, you can begin coding.

You should expand your current development process
to include web application security. Your existing
development tools should support the additional
processes needed for security requirements, perform
the analysis and design security modeling. However,
the remaining development phases require additional
capabilities for secure applications.

Web application assessment products, such as HP
WebInspect software, can support these phases. HP
WebInspect lets you simulate advanced web application
attacks. Developers, QA testers and operations
administrators can use HP WebInspect to identify specific
web application vulnerabilities. The results can be
proactively cycled back through the development process
to correct vulnerabilities and mitigate risks. The following
sections describe how to construct and implement secure
web applications, using products such as HP WebInspect
for web application protection.

5

Coding for web application security
Security requirements and models provide direction for
developing application code. However, if an application
is not built securely, the requirements and the models
don’t matter. Building secure applications requires
developing and enforcing secure coding practices.
Secure coding practices include not just the application
code but other aspects such as user interface (UI)
development and prototyping.

Secure coding practices
Most organizations have some coding standards,
such as naming conventions and documentation
requirements. Adding security to standard coding
practices can provide immediate payback in producing
more secure applications. Examples include:

• Never trust incoming data, and always check this
data.

• Never rely on the client to store sensitive data.

• Make error messages generic to users, and document
them for support purposes.

• Use object inheritance, encapsulation and
polymorphism wherever possible.

• Take care when you use environment variables,
and always check boundaries and buffers.

Once you establish secure coding practices, you must
enforce them. You can use a code walkthrough, where
one developer, preferably a senior developer, reviews
code written by another developer. The reviewer audits
the code for security to see that the code conforms to
the organization’s coding standards. Code that does
not conform to the security standards must be corrected
before it goes into the testing cycle.

Organizations that follow iterative development or
XP methodologies can quickly follow these practices.
Developers are teamed in pairs to develop a function.
Each developer audits and reviews their partner’s code
from a security perspective. This practice tightens security
procedures and reduces the vulnerabilities that pass into
the testing process.

Designing secure user interfaces
You should also be careful about the type of data that
users can access through the user interface design. Build
limits into your applications to restrict the data that users
can enter into form fields. In addition, restrict fields
as to the type of information that users can enter. For
example, limit domestic ZIP codes to numeric values
only.

Once you design the interface, developers should have
users test the interface from a security perspective,
focusing on what the user should and should not be
able to do. Compare the results with the requirements,
analysis and design models and code to determine
whether your applications support appropriate user
actions and prevent unauthorized actions. This iterative
process helps you identify and correct vulnerabilities
before you release applications into production.

6

Figure 4: Online checkout
security interaction

Shopping cart Customer Security Product

Purchase product
Validate customer

Authenticated customer

Validate request

Valid request

Request price

Provide price

Validate request

Valid request

Calculate total

Validate credit card

Authorized credit card

Prototyping security into your
application
Prototyping is key to iterative web development.
Through prototyping, you can break down complex
modules and conduct proofs of concept for specific
functionality. Unfortunately, prototypes often go into
production and are difficult to support. Prototypes are
not intended for production environments. They usually
do not have the infrastructure of a production system.
For example, security is usually not in a prototype. You
should not release prototypes into production unless
you enhance the prototype to include a minimum set
of infrastructure requirements, including adequate
application security. In addition, you should audit all
production applications for security vulnerabilities so
that you can identify security problems quickly.

Testing for security
Testing begins early in the software development lifecycle
and extends until deployment. QA testers check that
an application works according to its requirements.
However, even in mature development organizations,
some requirements may be implied or undocumented.
Because security, in particular, is often not considered,
testers often provide the only protection between a
potential security problem and the assets of their
organization, and their security testing must be
thorough.

The first step in security testing is to include security in the
test plan. Security should have its own section so that it
is adequately addressed during the QA process. While
traditional system testing checks that an application
performs its required functions, security testing checks
that the application does not perform certain functions.
You should also develop security scenarios that define
potential malicious attacks, such as brute-force hacking,
parameter checking, SQL injection, buffer overflows and
cross-site scripting. For each scenario, create an attack
that a malicious intruder may use to compromise the
application. Once the test plan is complete, define test
cases to test the methods that attackers use to break
applications. The test cases should describe the action
that is tested, the expected results and whether the test
passed. You must complete security testing during the
QA phase before applications move into production.

Deploying secure applications
Even after an application has passed QA testing, it may
be vulnerable to malicious attacks if the application is
deployed in an insecure environment. Therefore, apply
security checks to your production environment to
determine that production servers are secure, including:

• Develop a backup and recovery plan.

• Limit access to the server, and regularly change
administrator passwords.

• Close all web server ports except those needed for
the application to run on the server.

• Define and secure the network connections with other
servers and other networks.

• Apply operating system patches to servers on a
regular basis.

• Do not leave extraneous files with old file extensions
on any web server that is available to the public.

• Identify only essential services for the web server,
and eliminate others.

You should develop and maintain these procedures for
a production environment and then periodically audit
them to verify that they are being followed.

Security in a post-implementation
environment
Web applications are not static. Content alters, and new
features are added, in some instances continually. Each
time a web application changes, you risk application
security. Even small changes can produce a vulnerability
that poses a major threat to the assets of a company
or provides information about a company’s customers.
By including proper security support in all aspects of
the development process and remaining vigilant about
security, you can reduce your risk of deploying
applications with security vulnerabilities and avoid
delays in deployment.

Yet security vulnerabilities can appear in even the
most secure organizations. To mitigate this risk, an
independent company should conduct penetration
testing on the web application server farm
periodically.

7

About HP WebInspect
HP WebInspect helps you secure your entire network
with intuitive, intelligent and accurate processes that
dynamically scan standard and proprietary web
applications for known and unidentified application
vulnerabilities. HP WebInspect provides a new level of
protection for your critical business information. With
HP WebInspect, you can find and correct vulnerabilities
at their source before attackers can exploit them.

Whether you are an application developer, security
auditor, QA professional or security consultant, HP
WebInspect provides the capabilities you need for
verifying the security of your web applications. HP
WebInspect addresses the complexity of Web 2.0 and
new web technologies such as Ajax, and identifies
vulnerabilities that are undetectable by traditional
scanners. HP WebInspect tackles today’s most complex
web application technologies with breakthrough testing
innovations, including simultaneous crawl and audit
(SCA) and concurrent application scanning, resulting in
faster and more accurate automated web application
security testing. HP WebInspect lets you perform security
assessments for any web application, including these
industry-leading application platforms:

• Macromedia ColdFusion

• Lotus Domino

• Oracle® Application Server

• Macromedia JRun

• BEA WebLogic

• Jakarta Tomcat

• ASP and ASP.NET

Conclusion
Your web applications are a portal to your corporate
assets. You need to use the necessary security
procedures to protect those assets from malicious
attacks. Security has evolved from networks and servers
and now includes applications, and you need to address
all three. Incomplete development processes leave your
applications at risk, no matter how structured your
development process may be. For greater application
security, you need to use mature development practices
that focus on web application security.

You can add secure practices into your development
process. Implementing a few security methodologies
into an existing methodology provides immediate results
and better quality applications.

Business case for application security
Whether a security breach is made public or confined
internally, the fact that a hacker can access your
sensitive data is a huge concern to your company, your
shareholders and most importantly, your customers.
Companies that are vigilant and proactive in their
approach to application security are better protected.
In the long run, these companies enjoy a higher return
on investment for their e-business ventures.

To learn more, visit www.hp.com/go/software
© Copyright 2007 Hewlett-Packard Development Company, L.P. The information contained herein is subject to
change without notice. The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.
Microsoft and Visual Studio are U.S. registered trademarks of Microsoft Corporation. Oracle is a registered
U.S. trademark of Oracle Corporation, Redwood City, California.

4AA1-5409ENW, October 2007

